Steinitz Theorems for Simple Orthogonal Polyhedra

نویسندگان

  • David Eppstein
  • Elena Mumford
چکیده

We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz’s theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring Steinitz-Rademacher Polyhedra: a Challenge for Automated Reasoning Tools

This note reports on some experiments, using a handful of standard automated reasoning tools, for exploring Steinitz-Rademacher polyhedra, which are models of a certain first-order theory of incidence structures. This theory and its models, even simple ones, presents significant, geometrically fascinating challenges for automated reasoning tools.

متن کامل

Modelling Decision Problems Via Birkhoff Polyhedra

A compact formulation of the set of tours neither in a graph nor its complement is presented and illustrates a general methodology proposed for constructing polyhedral models of decision problems based upon permutations, projection and lifting techniques. Directed Hamilton tours on n vertex graphs are interpreted as (n-1)- permutations. Sets of extrema of Birkhoff polyhedra are mapped to tours ...

متن کامل

Uniqueness theorems for polyhedra.

In 1813, Cauchy2 gave the first proof of the theorem that two closed convex polyhedra in three-dimensional space are congruent if their faces are congruent in pairs and are joined to each other in the same order: in effect, the a priori possibility of rotations of the faces about the edges-which are obviously seen to be possible for some easily constructed open polyhedra-cannot occur for closed...

متن کامل

Steinitz Representations of Polyhedra and the Colin de Verdière Number

We show that the Steinitz representations of 3-connected planar graphs are correspond, in a well described way, to Colin de Verdière matrices of such graphs.

متن کامل

Fixed point results for Ʇ_Hθ- contractive mappings in orthogonal metric spaces

The main purpose of this research is to extend some fixed point results in orthogonal metric spaces. For this purpose, first, we investigate new mappings in this spaces. We introduce the new notions of functions. Then by using it, we define contractive mappings and then we establish and prove some fixed point theorems for such mappings in orthogonal metric spaces. Then by utilizing examples of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JoCG

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014